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Introduction
Sexism/Misogyny
◦ Sexism is prejudice, stereotyping or discrimination (typically against women) 

based on their sex or offensive use of language against women.
◦ Misogyny is dislike, contempt for, or prejudice against women

It can be in the form of explicit jokes or suggested in a subtle way 
with implied context

Sexism detection: Analyzed as a prediction problem
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Task (closed task1 and task2)
This shared task is about the detection of sexism/misogyny in comments posted 
in (mostly) German language to the comment section of an Austrian online 
newspaper.

Challenges:
◦ Annotations instead of labels (may very and have a tie too)
◦ Multiple prediction tasks

◦ Binary class classification
◦ Multi class classification
◦ Regression

◦ Cannot use pretrained models

Evaluation metric:
◦ Macro F1 for classification (closed task 1)
◦ Jensen-Shannon distance for binary and multi score distribution (closed task 2)
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Proposed Approach

Load/prepare 
data

Generate 
embeddings

Present as muti-
task learning 

problem

Intuition for Multi-task learning
• Same input data for all tasks 
• Similar tasks (in nature)
• Can benefit from sharing jointly learnt features through common layers
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Preparing data
Preprocessing
◦ Noise filtered (numbers and special characters)
◦ Training samples < 2 words filtered

Aggregating annotations [0-kein, 1-Gering, 2-Vorhanden, 3-Stark, 4-
Extrem]
◦ Classification

◦ Binary majority (0 vs 1,2, 3, 4) annotations
◦ Binary one (at least one 0 annotation)
◦ Binary all (no 0 annotation)
◦ Multi majority (annotation in majority)
◦ Disagree binary (0 vs 1,2,3,4) annotation

◦ Distribution prediction
◦ Binary probability distribution (0 vs 1,2,3,4)
◦ Multi distribution prediction (0, 1, 2, 3, 4)
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Imbalanced data

Task Percentage of labels

bin_maj [0, 1] 65 %,  34 %

bin_one [0, 1] 46 %,  53 %

bin_all [0, 1] 83 %,  16 %

multi_maj [0, 1, 2, 3, 4] 67%, 3%, 15%, 10%, 1%
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Training samples: 7984

Unique words: 32,362

Sample size: 173 words (longest), 0 words (shortest), Avg: 32.86

Model setup

maxLen = 80

Loaded 'cc.de.300.vec’ embeddings (default 300 dimensions)
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Network Architecture
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40 Batch size, 5 epochs, 0.2 validation split, shuffle=true
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Untrainable
300 size

Two attention heads
30 size for FF layer
0.1 dropout rate

Leaky_relu
0.3 dropout rate

Sigmoid for binary classification
Softmax for multiclass classification

Linear for distributions

Loss: 
 - Binary focal cross entropy
 - Categorical focal cross entropy
 - MSE
Metric:
 - Binary accuracy 
 - Categorical accuracy
 - MAPE
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Results

Team Model Rank Score JS Dist Multi JS Dist Bin

LMR deSeDector 5 0.388 0.426 0.349

Team Model Rank Score MultiMaj 
F1

BinMaj 
F1

BinOne 
F1

BinAll 
F1

DisagreeBin
F1

LMR deSeDector 6 0.476 0.273 0.584 0.521 0.536 0.46
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Conclusion
We proposed a transformer based multi-task learning architecture to 
perform multiple classification/distribution tasks as one architecture

The network architecture is simple and light-weight

The loss functions suited for imbalanced data improved accuracy

The approach yielded good results and needs to be investigated 
further
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Limitations and Future work
The feature representation of tasks differ despite using same data for similar 
tasks. 
◦ In future we will explore separation of common layers and task specific layers

◦ Can also split into 2 or 3 multi-task learning models by combining highly similar tasks for the 
same model

A modest architectural was used to cut on use of hardware resources and 
training time.
◦ A bigger architecture should used to learn better nuanced features across all tasks

Our approach to address the skewed representation can further be improved 
through a better technique  
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Thank you
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